Approaches to Enhancing Lambing Rate from Out of Season Breeding

Presenter:

Marlon Knights, PhD

Associate Professor, Reproductive Physiology Division Animal and Nutritional Sciences Davis College of Agriculture Natural Resource and Design West Virginia University

> Host/Moderator: Jay Parsons December 11, 2018

This webinar is made possible with funding support from the Let's Grow Committee of the American Sheep Industry Association.

Outline

- Reproductive Efficiency Lambing rate as a measure of reproductive efficiency
- Seasonality of reproduction in sheep
- Consequences of seasonal reproduction
- Out-of-season breeding
 - benefits and strategies

Reproductive Efficiency has the Single Largest Impact on Flock Productivity and Profitability

Lambing rate – Global measure of reproductive efficiency

Flock Lambing Rate

- Lambs born per ewe (exposed at beginning of the breeding season)
- Lambs born is a function of:
 Proportion of ewes lambing
 Prolificacy (lambs born per ewe lambing)

Flock Lambing Rate

- If we introduced rams to 100 ewes
- 90 ewes lambed (proportion lambing = 90%)
- 180 lambs produced
- **Prolificacy** = 180/90 = 200%
- Lambing rate = 180/100 *100 = 180% (0.9 * 200)

US Lambing Rate

SEASONALITY OF REPRODUCTION

Seasonality of Reproduction in Sheep

 In temperate regions sheep are reproductively active during a limited defined season

Timing of Seasonality of Reproduction in Sheep

Involvement of Photoperiod

LH Measure of Reproductive Activity is Suppressed During Anestrous Season

Seasonal Changes in the Sensitivity to Estradiol Negative Feedback (Legan et al., 1977).

CONSEQUENCES OF SEASONALITY OF REPRODUCTION

Consequences of Seasonality of Reproduction

- Lower annual and lifetime productivity of the ewe
- Significant variation in lamb prices
 Gluts in lamb supply and depressed prices
- Variation in lamb supply

Seasonality of reproduction results in Low Lambing Frequency

1 lambing per year

Major factor limiting lambing rate/productivity and profitability

Traditional Annual Lamb Production Cycle

Traditional lamb production is associated with a long (7-month) interpregnancy period

Seasonality of reproduction results in most lambs marketed at low lamb prices

Limits profitability

Seasonality of Reproduction in Ewes results in Most Lambs Being Sold at Lower than Average Prices

Seasonal Reproduction Results in Inconsistent Lamb Supplies and Market Gluts

Seasonality of reproduction results in most lambs marketed at low lamb prices

Monthly Slaughter and Feeder Lamb Prices (1990-2016)

Goal for Out-of-Season Breeding

Target Higher Prices

Out-of-Season Breeding Allows you to Target Periods of High Lamb Prices

Out-of-Season Breeding means re-Breeding During Seasonal Anestrus shortens the inter-pregnancy period

How Do we Get Ewes to Breed Out-of-Season?

• We reactivate the reproductive system!!

The Ewe is a Seasonally Polyestrous Animal

Seasonal Changes in the Sensitivity to Estradiol Negative Feedback (Legan et al., 1977).

How do we Reactivate the Reproductive System of Seasonal Anestrous Ewes?

- Make the ewe think its fall (short days/breeding season)
 - Light manipulation
 - Cheap, natural but not always practical

- Melatonin treatment
 - Relatively natural but not available or approved for use
- The "male /ram effect"

Abrupt Ram Introduction Reactivates the Reproductive System Increases LH Secretion in Anestrous Ewes

Fig. 2. Changes in the plasma concentrations of LH in a ewe one week before (Day -8), immediately before (Day 0) and 24 h after (Day +1) the introduction of rams. After Poindron *et al.* (1980).

RI increases secretion of LH in anestrous ewes (Knights et al., 2002)

Abrupt RI - "Ram-effect" reactivates the reproductive system and induces ovulation and estrus in some ewes

The Ram effect is the Key to successful breeding of ewes out of season!

MANY APPROACHES TO IMPROVE LAMBING RATE IN OUT-OF-SEASON BREEDING IS BASED ON HARNESSING AND IMPROVING THE RAM-EFFECT RESPONSE

Progetserone Pretreatment

Breeding Dry mature Females Outof-Season/Spring using CIDRs

Response of Anestrous Ewes to Abrupt RI - "Ram-effect"

Progesterone-pretreatment and Ram/buck introduction

- Effects of Progesterone
 - Females express estrus at first ram-induced ovulation (females have opportunity to become pregnant before loosing response to male)
 - Prevents premature regression of (corpus luteum) CL
Treatment Schedule for Spring Breeding (Out-of-Season)

Reproductive Response of Progesterone (CIDR) Pre-treated Dry Anestrous Females

Another Approach for Spring Breeding (Out-of-Season)

Reproductive Response of Dry Anestrus Females Treated with P.G. 600[®] administered at CIDR Removal

• Breeding and selection

- Choose the right breed
 - Tropical breeds
 - Dorset, Polypay, Finnsheep
- Select the right animals
 - h² for season length = 0.26
 - Select replacements from ewe lambs born in fall
- Breed the right animals
 - Heterosis probably high

- Separate ewes from rams prior to breeding period
 - At least 1 month prior to breeding
 - Ewes can become refractory to the ram
 - New/novel rams evoke the response

Natural method: The «male effect» How it works

Season Suckling Low body condition score

- Wean lambs from ewes
 - 1 month prior to breeding
- Ensure ewes are in good body condition
 - Improve nutrition

Improving Nutrition will Improve Pregnancy Rate in Lactating Ewes in Out-of-Season Breeding

• Ram power Ewe:ram ratio should not to exceed 18:1

Manage the breeding area

- Keep in smaller lots first 2-3 days after ram introduction to maximize the ram effect (greater contact)
- Avoid single ram lots if possible

 Conduct breeding soundness examination on rams

• "Prime" the male

- Melatonin treatment
- Improve semen characteristics
- Improve libido
- Improve male effect

OPTIMIZING PROLIFICACY

LR = % lambing X prolificacy

Approaches to Optimize Prolificacy

- Selection and breeding
 - Breeding and selection –cheapest and most practical approach
 - -Genetic diversity

				Aver.	Aver.	Aver.	Aver.	Aver.	Aver.	Aver.
	#	#	#	born per	weaned per	Birth wt	Adj 50-wt	Adj 100-wt	ADG	# lambings/
Breeds	Ewes	Born	Lambing	s lambing	lambing	(kg)	(kg)	(kg)	(kg)	ewe/yr
Border Cheviot	32	50	32	1.56	1.50	4.3	21.2	35.7	0.28	1.00
Border Leicester	44	74	48	1.54	1.33	4.5	20.2	35.7	0.29	1.09
Canadian	283	537	30.	3 1.74	1.56	5.6	27.1	39.8	0.25	1.09
Clun Forest	74	109	19	5 1.45	1.35	0.0	22.0	32.1	0.20	1.01
Charollais	80	153	84	1.82	1.68	5.0	26.8	46.8	0.40	1.05
Corriedale	10	14	10	1.40	1.40	5.2	28.4	44.7	0.31	1.00
Dorset-Horned	14	27	14	1.93	1.79	0.0	21.9	33.4	0.23	1.00
Dorper	139	251	168	3 1.49	1.34	39	20.0	35.7	0.30	1.21
Dorset-Polled	1,837	3,140	2,030	1.55	1.39	4.7	23.6	37.0	0.27	1.11
Finnish Landrace	32	89	37	2.41	2.19	3.L	21.6	36.2	0.29	1.16
Hampshire	325	542	361	L 1.50	1.32	5.	26.0	45.1	0.37	1.11
Ile de France	103	178	112	2 1.59	1.44	4.	25.2	41.4	0.31	1.09
Icelandic	100	178	100	1.78	1.68	3.9	19.1	29.8	0.22	1.00
Katahdin	34	58	34	1 1.71	1.50	4.2	19.0	39.0	0.38	1.00
North Country Cheviot	305	488	305	5 1.60	1.48	5 <mark>3</mark>	24.6	36.2	0.24	1.00
Oxford	8	13	8	3 1.63	1.63	5 <mark>9</mark>	23.2	43.9	0.41	1.00
Polypay	615	1,441	757	7 1.90	1.68	4 <mark>.</mark> 5	23.3	37.7	0.29	1.23
Rideau	4,082	10,522	4,507	7 2.33	1.90	3.8	22.5	38.9	0.33	1.10
Romanov	1,054	3,601	1,20	2.95	2.33	2.9	20.8	35.8	0.30	1.16
Shropshire	14	24	14	1 1.71	1.64	0.0	24.2	43.9	0.38	1.00
Suffolk	844	1,489	90	1.65	1.45	5.0	25.1	43.4	0.36	1.07
Tunis	9	11	ç	1.22	0.89	5.6	20.5	27.3	0.14	1.00
Texel	243	349	243	3 1.44	1.31	4.6	23.8	34.1	0.20	1.00

 Table 2. Average breed performance 2011 – GenOvis program

Approaches to Optimize Prolificacy

- Other management practices
 - -Nutritional management
 - Flock composition

Other Goals for Out-of-Season Breeding

- Opportunity to improve annual and lifetime ewe productivity
- Improve consistency in lamb supply
- Fewer Losses to Predators
- Improve Profits

Taking Further Advantage of Fall Lambing/Out of Season Breeding

Re-breeding of Fall- lambing Females

Rebreeding Fall Lambing Females

Dry Fall-lambing Ewes Can be Re-bred with High Fertility in Late Fall/Early Winter

Suckling will not Affect the Ability of Falllambing Ewes to Re-breed in Late Fall/Early Winter.

Summary

- Fall Lambing can improve productivity and profitability if lambing rates are optimal
- Achieving optimal lambing rates involves properly preparing the ewe and ram for breeding
- The use of CIDRs (progesterone-pretreatment) and other pharmaceuticals can also assist in achieving optimal lambing rates

Our Sheep Group West Virginia University

Differences Exist for Operations with Fall-Lambing Versus Spring-Lambing

Production Variable	Fall	Spring
	Lambing	Lambing
Pregnancy Rate (ewes lambing/ewes exposed)	75%	89%
Lamb Crop (lambs born/ewe lambing)	159%	170%
Mortality Rate	6%	10%
Average Market Price	\$0.93	\$0.75
Average Cost/lb of Lamb Produced	\$0.58	\$0.51
Profit/lb of Lamb Produced	\$0.33	\$0.28

Lambing Rate in some Sheep Producing Countries

	Country	Lambing rate, %	
のためのです	Australia	90-98	Australia Bureau of Statistics, 2013
	New Zealand	125-129	Beeflambnz.com, 2013
	UK	155-160	Nationalsheep.org.uk, 2011; nadis.org.uk
P. and Day	Canada	132 [193-225]	Sheep Statistics, 2012; Kennedy, OMAFRA
- LOV	USA	110	NASS

Increasing frequency of lambing requires shortening the interpregnancy period re-breeding during anestrus

Graph 7. January 1 Breeding Sheep and Lamb Inventory - United States

