Profitable Genetic Selection: How the National Sheep Improvement Program Can Help the US Sheep and Goat Industry Presenter: Dr. Reid Redden Extension Sheep Specialist and NSIP Chairman North Dakota State University Host/Moderator: Jay Parsons ### December 17, 2013 This webinar is being offered in cooperation with the American Sheep Industry Association Rebuild the Sheep Inventory Committee. ASI/NLFA ANNUAL CONVENTION Charleston, South Carolina JANUARY 22-25, 2014 For more information, go to www.sheepusa.org #### **National Sheep Improvement Program** "A Profit Driven Genetic Selection Tool" #### **National Sheep Improvement Program** "If you like your show sheep, you can keep your show sheep!" #### **National Sheep Improvement Program** - Additional Technology, not Substitution - Improve Decisions, not Change - Market Quantitative Data, not Qualitative - Facilitate Collaboration (Apples to Apples) - Initiate Profitable Measurements #### Objectives for Goal 3 – Productivity Improvement - 1. Promote widespread producer use of quantitative genetic selection - 2. Reduce the seasonality of the lamb industry - 3. Develop a long-term plan for U.S. sheep research and producer education - 4. Develop industry-wide production metrics to measure productivity #### **NSIP** Webinar Outline - Past, Present, and Future of the Program - Other Quantitative Genetic Programs - Success Stories of the Program - Nuts and Bolts - Questions - Past - Non-profit formed by the Sheep Industry in 1980s - Developed EPDs - Transitioned to Sheep Genetics (LambPlan) - EBVs = EPD x 2 - Software - Reports Twice a Month - Present - NSIP Office - Mary Sorenson - Board of Directors - Chairman Reid Redden - Vice Chairman Cody Hiemke - Secretary Mary Langhus - Treasurer Jack McRae - Technical Dave Notter - Advisor Rodney Kott #### Present - Board of Directors - Polypay John Carlson - Suffolk/Dorset Alan Culham - Katahdin Carl Ginapp - Hampshire Dan Morrical - Tracie Roeder Targhee - Dan Waldron Rambouillet - Jim Morgan At Large - Present - 20 Breeds - 150 Flocks - 10,000 sheep - Currently, the lack of acceptance of this technology has put our industry at a competitive disadvantage to foreign competition and other sources of food and fiber #### Future - 50% or greater seedstock sheep breeders - 50% or greater commercial buyers using EBVs - Active group of meat goat breeders ### **Beef Cattle** - Ground work for EPD were done in the 1970s - Commercial acceptance of growth data started in the 1980s #### U.S. dairy herd and milk production per cow Source: USDA, Economic Research Service using USDA Agricultural Projections to 2020. ## US Consumption and Supply of Lamb We need to produce more lamb with less ewes! NSIP can help the industry accomplish this goal! Source: USDA, Economic Research Service ### How EPD's are used? In the current lamb market, that equates to \$10 per lamb. If he sires 50 lambs for 4 years, Ram #2 generate approximately \$2,000 more than Ram #1 in his first generation offspring. than Ram #1 - Seedstock Breeders Enroll - \$50 to 350 annual fee based on flock size - Waive enrollment fee first year - Waive enrollment fee for 3 years for youth (22) - Collect data relevant to flock and breed - Enter data into software program - Submit data to LambPlan (Sheep Genetics) - \$2.65 per animal (90 days) - Produce Estimate Breeding Values - Use EBVs for Marketing and Selection - Commercial/Seedstock Producers - Purchase sheep with EBVs - Montana Ram Sale - Rams with EBV Data \$ - Rams without EBV Data \$ - Estimated Breeding Values (EBVs) - Growth Traits - Birth Weight (kg, 24 hours) - Weaning Weight (kg, 45 to 90 days) - Maternal Weaning Weight (kg, Milk) - Post Weaning Weight (kg, 91 to 305 days) - Yearling Weight (kg, 290 to 430 days) - Estimated Breeding Values (EBVs) - Reproduction Traits - Number of Lamb Born (%) - Number of Lambs Weaned (%) - Carcass Traits - Loin-Eye Muscle Depth (mm, PWWT) - Fat Depth (mm, PWWT) - Parasite Resistance - Worm Egg Count (%, WWT or PWWT) - Estimated Breeding Values (EBVs) - Wool Traits - Fleece Weight (%, yearling) - Fiber Diameter (um, yearling) - Staple Length (mm, yearling) - Indexes - Carcass Plus (+PWWT, +EMD, -FAT) - US Hair (+WWT, +MWWT, +NLW, -NLB) - US Maternal (+WWT, +MWWT, +NLW, -NLB) - US Range (+PWWT, + MWWT, YWT, +FW, -FD, +NLB) - Lamb Weaning Weight - Adjustments - Age/BW - Birth/Rearing Type - Age of Dam - Sex - Difference from Mean - Farm - Lambing Season (35 d) - Report all data - Progeny Testing - Animal is the average of Sire and Dam - Sire and Dam EBVs are adjusted based on lamb performance compared to other sires and dams in the contemporary group | Sires | | Ī | Bwt | Wwt | Pwwt | Pfat | Pemd | NLB | NLW | Psc | Mwwt | Ī | | Sire | OVEMENT PROS | |---------------------------------------|------------|---------------|-------|------|------|------|--------|-------|-----|-----|------|-------------|-------------|------|-----------------------------| | Animal ID | Inbreeding | Prog:Flks | kg | kg | kg | mm | mm | 96 | % | cm | kg | Lamb2020 | | Dam | 3.1.5 | | 693011-2011-111029 | | 26:1 | -0.40 | -0.9 | -0.1 | -0.1 | 0.8 | | | | | 101.1 | 107.2 | | 008-sc1036 | | NORTH DAKOTA SU
693011-2011-111081 | | Acc.:
25:1 | 0.09 | 2.9 | 7.0 | -2.3 | 0.3 | | | | | 54
106.1 | 76
144.7 | | 1-2006-066542
008-sc1036 | | NORTH DAKOTA SU | | Acc.: | 0.03 | 2.5 | 1.0 | -2.5 | 0.3 | | | | | 51 | 73 | | 1-2006-066699 | | 693011-2011-SP1121 | | 34:1 | 0.21 | -0.4 | -2.3 | 0.9 | -0.6 | | | | | 97.3 | 80.0 | * | 1 2000 000033 | | NORTH DAKOTA SU | | Acc.: | 11000 | 233 | 5667 | 100 | | | | | | 49 | 69 | * | Sires / Page 1 | | | | | | SHE | EP GEN | VETIC | S | | l, | ļ | | | 06-Aug-2013 | | Sire Report - H | - Pro | - Proven Sires | | | | | | | | NSIP | | | | | |---|--------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|----------------|---------------|--------------|--------|--------------------------------------|--| | Carcass+ | | | | | | July 2013 | | | | | | | | | | ID
Flock | Prg:Flks | BWt
kg | WWt
kg | MWWt
kg | PWWt
kg | PFat
mm | PEMD
mm | NLB
% | NLW
% | PSC
cm | Lamb
2020 | Carc.+ | Sire
Dam | | | 693003-2012-012013
University Wisconsin | 10 : 1 | 0.54
77.0% | 2.67
76.0% | -0.27
35.0% | 3.48
79.0% | -3.14
0.0% | 1.39
82.0% | -5.40
28.0% | -5.3
24.0% | -0.8
38.0% | 106.2 | 147.0 | 6930032011011031
6930032009009162 | | | 693011-2011-111081
NDSU | 25 : 1 | 0.14
77.0% | 3.11
77.0% | 0.27
25.0% | 7.50
79.0% | -1.90
0.0% | -0.42
63.0% | -0.50
14.0% | -1.2
11.0% | 0.0
0.0% | 104.9 | 136.4 | 6930112008SC1036
6930112006066699 | | | 693005-2007-BLT777
IA STATE UNIV. | 66 : 1 | 0.39
83.0% | 1.39
79.0% | 0.26
16.0% | 2.29
83.0% | -2.61
0.0% | 0.73
86.0% | -0.50
10.0% | -1.4
8.0% | 0.0
0.0% | 104.0 | 130.2 | | | | 693004-2012-1215F2
Richard and Mark Roembl | 9 : 1
ke | 0.14
59.0% | 1.25
71.0% | 0.17
33.0% | 2.11
74.0% | -1.76
0.0% | 1.11
75.0% | -1.50
28.0% | -4.7
23.0% | -0.5
34.0% | 104.1 | 130.2 | 69300420111115M2
69300420102C1029 | | | 693003-2011-011031
University Wisconsin | 64 : 1 | -0.20
87.0% | 0.20
85.0% | -0.08
39.0% | -0.71
87.0% | -0.59
0.0% | 2.42
87.0% | -1.70
32.0% | -6.5
26.0% | -1.3
68.0% | 103.8 | 128.0 | 6930032010010075
6930032009009145 | | | 693003-2010-010120
University Wisconsin | 31 : 2 | 0.71
78.0% | 1.91
77.0% | -0.88
50.0% | 2.92
78.0% | -3.10
0.0% | -0.02
72.0% | -8.10
44.0% | -9.4
38.0% | -0.3
36.0% | 103.5 | 127.0 | 6930032005DF1283
6930032009009120 | | | 693003-2008-008084
University Wisconsin | 65 : 1 | 0.15
88.0% | 0.95
87.0% | -0.24
67.0% | 1.23
88.0% | -1.61
0.0% | 1.10
79.0% | -3.80
55.0% | -5.9
46.0% | -0.3
52.0% | 103.4 | 125.6 | 693003200707109S
6930032005005066 | | | 693011-2008-SC1036
NDSU | 67 : 1 | -0.28
80.0% | 1.89
80.0% | 0.06
41.0% | 6.24
82.0% | -0.56
0.0% | -0.34
60.0% | -0.50
13.0% | -0.8
10.0% | 0.0
0.0% | 103.4 | 124.7 | | | | 693003-2010-010075
University Wisconsin | 31 : 1 | 0.10
83.0% | 1.37
82.0% | -0.34
53.0% | 1.99
84.0% | -0.88
0.0% | 0.74
83.0% | -1.90
42.0% | -3.1
34.0% | -0.7
41.0% | 103.0 | 122.2 | 6930032009DF1550
6930032008008056 | | | 693003-2007-07109S
University Wisconsin | 27 : 2 | 0.42
82.0% | 0.57
84.0% | -0.65
69.0% | -0.50
84.0% | -2.00
0.0% | 0.99
76.0% | -8.40
59.0% | -7.8
51.0% | -0.8
45.0% | 102.5 | 119.0 | 6930032005DF1283
6930032006000300 | | | 693003-2008-08146S
University Wisconsin | 73 : 2 | 0.56
80.0% | 2.69
86.0% | 0.19
58.0% | 5.05
87.0% | -1.86
0.0% | -1.10
82.0% | 5.40
49.0% | -4.8
41.0% | 1.2
42.0% | 102.5 | 119.0 | 6930052007IS7104
6930032007007113 | | | 693003-2010-010006
University Wisconsin | 17 : 1 | 1.03
76.0% | 4.39
76.0% | -0.06
50.0% | 7.62
78.0% | -2.48
0.0% | -2.48
73.0% | 5.80
35.0% | 2.7
29.0% | 1.1
23.0% | 102.3 | 118.7 | 6930052007IS7104
6930032006006034 | | | 693004-2007-Z735TW
Richard and Mark Roembl | | -0.19
64.0% | 0.52
81.0% | -0.09
43.0% | 1.34
81.0% | -0.33
0.0% | 1.00
72.0% | -2.10
37.0% | 0.4
30.0% | -0.4
35.0% | 102.6 | 118.6 | 6930042006000122
6930042004000064 | | | 693004-2010-2C1019
Richard and Mark Roembl | 36 : 1
ke | 0.08
70.0% | 1.71
82.0% | 0.86
47.0% | 3.34
84.0% | -0.65
0.0% | 0.03
83.0% | -1.70
39.0% | -4.7
32.0% | -0.2
35.0% | 102.5 | 118.6 | 69300420080W839S
6930042008R810TW | | | 693004-2011-1115M2
Richard and Mark Roembl | 23 : 1
ke | 0.04
68.0% | 1.05
80.0% | 0.10
40.0% | 1.20
82.0% | -0.42
0.0% | 0.78
82.0% | -3.50
34.0% | -5.0
28.0% | -0.9
66.0% | 102.3 | 117.3 | 6930042007Z735TW
69300420080W800S | | | 693004-2008-0W839S
Richard and Mark Roembl | | 0.37
75.0% | 1.49
85.0% | 0.57
61.0% | 0.98
86.0% | -1.02
0.0% | 0.50
84.0% | -9.90
51.0% | -14.0
43.0% | -0.3
34.0% | 102.2 | 116.8 | 693003200707109S
6930042006636PTW | | ## Conclusion - It Works! Use it! - Enrollment forms are available on the website: www.nsip.org #### **ASI** Convention - Genetic Stakeholders Meeting @ 1 pm (1/23/14) - Enhancement of NSIP, Why it is not the 1980's version, Reid Redden - Using NSIP in the Industry. Confession of a retired sheep specialist, Rodney Kott - How to stretch the impact of your genetics: a Cooperative Breeding Group that actually works, Kreg Leymaster - How to breed or select terminal sires to improve your lambs when marketed in a value based system. David Notter - NSIP Board Meeting @ 3 pm (1/23/14) - NSIP Business, Open Meeting - Election of Officers/Directors - Register at <u>www.sheepusa.org</u> ### **Profitable Genetic Selection:** How the National Sheep Improvement Program Can Help the US Sheep and Goat Industry Presenter: Dr. Reid Redden Extension Sheep Specialist and NSIP Chairman North Dakota State University Host/Moderator: Jay Parsons ### December 17, 2013 This webinar is being offered in cooperation with the American Sheep Industry Association Rebuild the Sheep Inventory Committee.