

### Feeding and Producing Sheep for Maximum Fiber Production – Is it Realistic?

Presenter:



#### Dr. Nancy Irlbeck Colorado State University

Host/Moderator: Jay Parsons

#### September 10, 2013

This webinar is being offered in cooperation with the American Sheep Industry Association Rebuild the Sheep Inventory Committee.





## Comparative Nutritionist

315

Corbis.com

Silver Moon

#### 06.28.2009 10:50





03.21.2009 16:30

#### 06.28.2009 10:50

### **WOOL SHEEP**

#### 01.22.2009 09:45

### **Romeldale CVM**

### Wensleydale

#### 06.06.2009 14:44

#### Teeswater

a lassa

#### 14:44 <mark>16.06.2009</mark>



U





## Karakul

1

Pull

17

## Karakul



# What do you look for in good fiber?1. Low Micron Count2. Fleece Weight

#### 03.21.2009 16:30

## Shrek Merino

OMG-Facts.org



### Feeding and Producing Sheep for Maximum Fiber Production – Is it Realistic?

Presenter:



#### Dr. Nancy Irlbeck Colorado State University

Host/Moderator: Jay Parsons

#### September 10, 2013

This webinar is being offered in cooperation with the American Sheep Industry Association Rebuild the Sheep Inventory Committee.

## **Factors Affecting Fiber**

## Genetics Environment





http://www.jsba.org/



http://www.ymccoll.com/fibers.html

#### **Coarse wool**



#### **Cashmere goat**



#### **Mohair – Angora Goat**



## Fine merino wool Typical wool fiber Chinese sheep wool



http://www.gutenberg.org/files/17740/17740h/17740-h.htm



## **Fiber Microscopy**

http://www.ymccoll.com/fibers.html

**Follicles** Are Actually An **Extension Of The** Skin

#### DIAGRAM OF AN ACTIVE HAIR FOLLICLE



http://www.vetmed.vt.edu/education/curricul um/vm8054/labs/lab15/lab15.htm

DERMAL PAPILLA

#### Dermis

#### Sebaceous gland-

-APM

-Sweat gland

#### Hair bulb

#### Hypodermis

http://www.vetmed.vt.edu/education/curricul um/vm8054/labs/lab15/lab15.htm

## Maximum # of follicles that a lamb can form is determined genetically



### Actual # of follicles formed is controlled by the environment

PRIMARY FOLLICLE = sweat gland; arrector pili muscle (APM) and a sebacious gland

#### Sebacious = lanolin

#### SECONDARY FOLLICLE = only sebacious gland



## **Factors Affecting Fiber**

## Genetics Environment





http://www.jsba.org/

## **Factors Affecting Fiber**

## GENETICS Environment





http://www.jsba.org/

Rare for a pasture sheep to reach maximum genetic potential for wool production.

## **Genetic Selection**

**Consistent Selection of One Trait Increases Risk of Negative Traits** 

Selecting for fiber fineness decreases the body size and fleece weights















## PSE

## **Factors Affecting Fiber**

## Genetics ENVIRONMENT





http://www.jsba.org/
### **Reproduction X Nutrition**

1. First 50 days of pregnancy – Minimal fetus or placenta growth

- 2. Day 50-100 Rapid Placenta Growth
- 3. Day 100-150 Rapid Fetal Growth

# **Physiological Status**

- **Growth** 
  - Neonate vs Early vs Late
- **Flushing**
- □Gestation 1<sup>st</sup> 2/3 vs last 1/3
- □ Lactation Early vs Late
- Maintenance



# Non-Pregnant Status



88 Days **Of 150** Days Gestation

Mid Second Trimester



112 Days Of 150 Days Gestation

Early Third Trimester



123 Days Of 150 Days Gestation

Mid-Third Trimester



# **Physiological Status**

- **Growth** 
  - Neonate vs Early vs Late
- **Flushing**
- □Gestation 1<sup>st</sup> 2/3 vs last 1/3
- □ Lactation Early vs Late
- Maintenance

PRIMARY FOLLICLE = sweat gland; arrector pili muscle (APM) and a sebacious gland

### Sebacious = lanolin

### SECONDARY FOLLICLE = only sebacious gland



Primary Follicle Development Day 60 to Day 90 of Gestation Secondary Follicle Development Day 90 to Birth Density of follicles is determined prior to birth and will not change

#### **Genetics X Nutrition**

### Genetics

Primary follicles begin form in skin of fetus between day 50-70 (90) of fetal development

### **Environment - Nutrition**

Secondary follicles form after day 90 of fetal development



http://www.lifetimewool.com.au/ewe%20man agement/progenyperf.aspx

### **NUTRITION IMPACTS**

Pre-weaning
 Pregnancy
 Lactation

Post-weaning



http://www.jsba.org/

### Fine wool greater impact From Nutrition!!

### **Shrek Merino**

**OMG-Facts.org** 

If poor nutrition during pregnancy & lactation will impose permanent limitation for wool production

Lambs whose dams are poorly fed = less 2<sup>nd</sup> follicle development

Progeny of young ewes = less 2<sup>nd</sup> follicle development

**Twin lambs = less 2<sup>nd</sup> follicle development** 

# Single Lamb





# Multiple Lambs

# Single Lamb

# Ultrasound?

Multiple Lambs

# Cost of that 2<sup>nd</sup> lamb?

Ì



Therefore pre-weaning environment is critical for realizing genetic potential of an individual sheep



http://moosemtnranch.com

Secondary Fibers are the Most Important (2<sup>nd)</sup>

Reduction in nutrition during development will significantly impact development of and final density of 2<sup>nd</sup> follicles

High 2<sup>nd</sup> follicle density associated with decreased fiber diameter and higher fleece weight

2<sup>nd</sup> fibers contribute the majority of fiber to adult wool fleece

### **Factors Affecting Fiber Diameter**

- 1. Age of animal
- 2. Sex of animal
- 3. Level of nutrition



# What do you look for in good fiber?1. Amount of wool2. Low Micron Count





LTEM 3.6

### Progeny clean fleece weight is affected by ewe nutrition from early to mid-pregnancy



www.lifetimewool.com.au



#### Late pregnancy nutrition effects progeny fleece weight



www.lifetimewool.com.au

LTEM 4.9



LTEM 3.7

### Progeny fibre diameter is affected by ewe nutrition from early to mid-pregnancy



www.lifetimewool.com.au



### Late pregnancy nutrition effects progeny fibre diameter



# **Physiological Status**

- **Growth** 
  - Neonate vs Early vs Late
- **Flushing**
- □Gestation 1<sup>st</sup> 2/3 vs last 1/3
- □ Lactation Early vs Late
- Maintenance

### 154# Ewe – Ca & P Requirements

|                            | Grams Ca | Grams P |
|----------------------------|----------|---------|
| Maint                      | 2.5      | 2.4     |
| 1 <sup>st</sup> 15 weeks   | 3.5      | 2.9     |
| Flushing                   | 5.7      | 3.2     |
| Gest 130-150<br>vs 180-225 | 6.2/7.6  | 5.6/6.4 |
| Lactation s/t              | 9.3/11.0 | 7.0/8.1 |





### 3<sup>rd</sup> Cutting



# Coarse Grind

# Fine Grind





## **Third Cutting**



### **Heated Water**

1104






# Caution with Sheep & Copper!

25 ppm =



#### Copper Deficiency = Achromotrichia 10:1 Cu:Mo



#### Other Species Minerals?

### Block or Loose Salt?

#### Overfeeding Creates Coarse Wool!!







#### Feeding and Producing Sheep for Maximum Fiber Production – Is it Realistic?

Presenter:



#### Dr. Nancy Irlbeck Colorado State University

Host/Moderator: Jay Parsons

#### September 10, 2013

This webinar is being offered in cooperation with the American Sheep Industry Association Rebuild the Sheep Inventory Committee.

## Questions?!